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Abstract— A correct perception of road signalizations is
required for autonomous cars to follow the traffic codes. Road
marking is a signalization present on road surfaces and com-
monly used to inform the correct lane cars must keep. Cameras
have been widely used for road marking detection, however
they are sensible to environment illumination. Some LIDAR
sensors return infrared reflective intensity information which is
insensible to illumination condition. Existing road marking de-
tectors that analyzes reflective intensity data focus only on lane
markings and ignores other types of signalization. We propose a
road marking detector based on Otsu thresholding method that
make possible segment LIDAR point clouds into asphalt and
road marking. The results show the possibility of detecting any
road marking (crosswalks, continuous lines, dashed lines). The
road marking detector has also been integrated with Monte
Carlo localization method so that its performance could be
validated. According to the results, adding road markings onto
curb maps lead to a lateral localization error of 0.3119 m.

I. INTRODUCTION

A robust perception system is fundamental to autonomous
cars safely navigate in urban environments. Road marking
detection is a perception algorithm responsible for extracting
horizontal signalizations like lane markings, crosswalks and
stop signs from road surface [1]. The appropriate detection of
road marking make possible keep the car in the correct lane
and follow the local traffic codes. Localization is another
problem of autonomous cars, particularly when covering
urban places where obstacles as buildings and trees block
the GPS satellite signal. To overcome this problem, maps
have been used to estimate the vehicle localization. As
road markings are common in the streets, they are usually
employed as map features for localization in urban cities [2],
[3].

Cameras have been widely used for road marking detec-
tion [1]. However, these sensors depend on external light con-
ditions to perform this task. Generally, filters are necessary
to handle shadows, excess and lack of light. This restriction
can be suppressed by using infrared reflective intensity data
returned by some LIDAR sensors. With intensity data it is
possible to determine if a LIDAR beam intercepted asphalt
or road painting independently of illumination condition.

Existing road marking detection methods that relies on
LIDAR intensity data are focused on extracting only lane
markings, thus they ignore other horizontal signalizations.
The work of [4] analyses a point cloud with intensity data
and checks for the highest intensity value. This value is used
as threshold to segment the points into asphalt and lane
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marking. Later, points pre-classified as lanes are projected
onto a (x, y) plane where the y axis is towards to the
road width. A 0.10 m window is slided in y direction to
determine the regions with high gradient. These regions are
classified as lane markings. [5] adopted a similar technique as
previous one, but applied Hough transform after the gradient
step for a better lane marking estimation. In [6] the asphalt
intensity is obtained by computing the highest value of the
intensity histogram. Then the point cloud is projected onto a
binary colored map, with black for asphalt and white for lane
marking candidates. Later, Canny filter was applied in the
binary map for edge detection. A sliding window is passed
through the resulting map and if the amount of white points
in the window area were greater than a value it is classified as
lane marking. In [3] is analyzed the intensity data obtained
from a multilayer LIDAR and seeks for contiguous points
that don’t have considerable intensity variance. Those points
are then placed on a grid map and then a Radon transform
is used for line detection. [7] also uses a multilayer LIDAR,
but includes an adaptive threshold to determine the ideal
intensity value that best separates asphalt from road painting.
The threshold is obtained by computing the intensity value
that maximizes the variance in the intensity histogram. Then
the UKF (Unscented Kalman Filter) is used to estimate lane
parameters.

Differently, in the proposed method we can extract not
only lanes, but any kind of road painting. For this we use
a modified Otsu thresholding method to segment the point
cloud returned from a Multilayer LIDAR (Velodyne HDL-
32E) into asphalt and road marking. Basically, the Otsu
method act like the adaptive threshold of [7] (obtains the
intensity that maximizes the variance of the histogram),
however we also analyze the separability measure and the
histogram cumulative sum for higher accuracy. In addition,
the idea of [3] is adopted to filter false positives. The previous
methods also assume that the LIDAR intensity data is noisy
free. So, we employed a LIDAR intensity data calibration
algorithm proposed by [2] before the road marking detection.

For results validation we applied the proposed detector in
a vehicle localization problem. In this way we compared the
Monte Carlo Localization (MCL) performance using a map
with curb data and another with both curb and road marking
data.

This paper is structured as follows. Section II describes
the road marking detector based on intensity data segmen-
tation, Section III describes the localization method based
on curb and road marking features, Section IV presents the
experiments results and Section V concludes this works.
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Fig. 1. Curb detection in urban streets with occluding obstacles in the
sides.

II. ROAD MARKING DETECTION

Before detecting the road markings, first it is necessary
determine the road boundaries in order to delimit the road
marking search space. Thus, a curb detector is previously
applied to estimate the road borders. For better results, the
reflectivity intensity data returned from LIDAR sensor is
calibrated in an offline step. Then, the road marking detection
method based on Otsu thresholding is employed in the
calibrated LIDAR data.

A. Curb Detection

As road markings only occur in road surfaces, we em-
ployed a curb detector to determine the road boundaries. The
obtained road boundary is used to delimit the region that will
be analyzed by road marking detector. The employed curb
detector is an extension of obstacle detector proposed by [8].
Basically our curb detector analyses the compression level
of consecutive rings returned by a multilayer LIDAR. As the
compression is proportional to the obstacle slope, we can
check if the compression value is inside a given threshold
interval to detect curbs.

In order to determine this threshold interval, we first ana-
lyze the effect of LIDAR beams intercepting a flat surface.
The radius of the formed rings are expressed by:

ri = h cot θi, (1)

where ri represents the radius of i-th ring and θi the
corresponding beam angle and h the sensor height.

The distance between rings (ring compression) is calcu-
lated through consecutive radius difference:

∆ri = ri+1 − ri (2)
= h(cot θi+1 − cot θi), (3)

where ∆ri is the distance between ring i and i+ 1.
When a ring i intercepts an obstacle, the ring compression

is changed to the interval:

Ii = [α∆ri, β∆ri( , (4)

where α and β are coefficients that determine the bounds of
interval I constrained by β > α.

Thus, we must determine α and β values that characterizes
the curb obstacle.

In order to optimize this analysis, the ring data is stored in
a circular grid. The grid is composed by i rows subdivided in
j cells. In each cell ci,j is stored the average value of LIDAR

(a) Crosswalk (b) Dashed line

Fig. 2. Intensity calibration of two road markings. For (a) and (b), left is
the original and right the calibrated intensity.

points position (xi,j , yi,j , zi,j) and the range value di,j . Cells
are pre-classified as curbs by checking the following criteria:

|di+1,j − di,j | ∈ Ii. (5)

However, rely only on ring compression to detect curbs
can lead to false-positives caused by objects with similar di-
mensions as curbs and occlusions. To enhance the detection,
three filters are applied.

1) Differential Filter: As curbs are obstacles with height
variation, a convolution mask is applied in each grid
cell. The convolution operation determines the steep-
ness of obstacles.

2) Distance Filter: Curbs are generally the closest obstacle
to the vehicle. In this way only the closest cells to the
vehicle are preserved.

3) Regression Filter: The result of distance filter can
incorrectly preserve cells that are not curbs (e.g. an-
other car traversing besides the vehicle). Thus, a robust
regression method (least trimmed squares) is applied
in the remaining cells.

After applying these filters the remaining cells are clas-
sified as curbs. The estimated left and right curb curves
are then used to delimit the road area for road marking
detection. Details of the curb detector are presented in [9].
Figure 1 illustrates the curb detection in urban streets and its
robustness to occlusions.

B. LIDAR Intensity Calibration

Due to sensor manufacturer miscalibration, the returned
intensity may not correspond to the expected values. For
example, a LIDAR beam that intercepts the asphalt must
return same intensity values in all road extent, but usually it
doesn’t occur. Consequently, the LIDAR intensity calibration
is essential for correct detection of road markings.

In this work, we adopted the deterministic calibration
method proposed by [2] which consists in the following
steps:

1) Collect LIDAR points by traversing an arbitrary envi-
ronment and associate them with pose data.

2) Place the LIDAR points onto a 2D grid. Each grid cell
stores the list of points that fall in. For each point,
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Fig. 3. Intensity histogram of a ring that intercepted a road marking.

only the intensity and the beam id information are
maintained.

3) In order to compute the correct intensity value of a
beam j that read an intensity a, we seek for all cells
that contain the pair (j, a) in the grid. Then the average
intensity is computed over these cells, but not taking in
account the intensity whose beam is j. The calibrated
intensity of (j, a) is the resulting average.

For each pair of beam id and intensity value, it is computed
the calibrated return. If a certain intensity is not present in
the grid, the calibrated return is computed by interpolating
calibrated values with close intensities. The result of the
calibration is a 32 × 256 table that comprehends in all
combination of beam id and intensity values. So, for every
LIDAR point, the intensity must be corrected by verifying
the return value stored in the calibration table. Comparison
of LIDAR intensity data before and after calibration is
illustrated in Figure 2.

C. Otsu Road Marking Detection

For road marking detection we analyze the calibrated
intensity of the LIDAR data. First, in order to restrict the
analysis to the road area, we use the left fl(x) and right
fr(x) curve models obtained from curb detector. The road
surface is retrieved by extracting points inside the interval
fl(x) < y < fr(x).

Analyzing a LIDAR data returned from road surface
(Figure 3(a)), the intensity value of points belonging to
asphalt (≈ 190) and to road marking (≈ 127) are con-
siderably distinct. The intensity histogram of these points
presents a bimodal shape, with one mode grouping asphalt
intensities and another grouping road marking intensities
(Figure 3(b)). In this way, the Otsu thresholding [10] was
applied to determine the intensity value T that maximizes
the variance between background (asphalt) and foreground
(road marking) classes. After applying the thresholding, the
LIDAR points are segmented into asphalt and road marking.

In the following, steps of the road marking detector are
listed:

1) Compute the normalized histogram of the intensity:
Let ni the i-th histogram value, M the number of road
points, the normalized intensity (pi) is computed by:

pi =
ni
M
.

2) Compute the cumulative sum: The cumulative sum
P (k) is the probability of a LIDAR ring point belong

to a range [0, k] and is calculated by:

P (k) =

k∑
i=0

pi,

with 0 < P (k) < 255 and L is the number of possible
intensity values that the LIDAR represents.

3) Compute the cumulative mean: The cumulative mean
m(k) represents the mean intensity of the range [0, k]
which is computed by:

m(k) =

k∑
i=0

ipi.

4) Compute the global cumulative mean: The global
cumulative mean mG is the mean intensity of whole
histogram:

mG =

L−1∑
i=0

ipi.

5) Compute the global variance: The global variance σ2
G

is the intensity variance sum over road points:

σ2
G =

L−1∑
i=0

(i−mG)2pi.

6) Compute the local variance: The local variance σ2
L is

the variance of a specific intensity:

σ2
L =

mGP (k)−m(k)

P (k)(1− P (k))
.

7) Obtain the threshold: The threshold T is the value of
k that maximizes σ2

L:

T = arg max
0≤k≤R−1

σ2
L(k).

8) Check the separability measure: The separability mea-
sure η(T ) represents the performance of using T to
separate the histogram into two classes. Better separa-
bility is associated to η(T ) around 1. Thus we verify
if η(T ) is greater than a given threshold tη .

η(T ) =
σ2
L(T )

σ2
G

.

9) Check the obtained separability intensity T : As the
road marking intensity is associated with low values,
T must be greater than a a certain intensity tT .

10) Check the cumulative sum of P (T ): Roads generally
have just a certain part of the asphalt covered by
painting. Therefore, P (T ) must never be superior than
a predefined threshold tP .

11) Detect lane marking: If the point satisfy 8, 9 and 10
and the point with intensity is lower than T , classify
the point as road marking.

The value T can be calculated once or recalculated for
each new LIDAR data. Due to the variance of road marking
and asphalt intensity along the streets (caused by wear), we
recompute T when received a new LIDAR data.
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(a) Top: crosswalk; Bottom: double line (b) Dashed line (c) Continuous line (d) Double line

Fig. 4. Road marking detection through a modified version of Otsu method. Blue lines are the road bounds estimated by curb detector and yellow points
correspond to the detected road marking.
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Fig. 5. Intensity histogram of Figure 4(b) of those points that are inside the curb bounds.

For better robustness, we discard the sequence of points
detected as road marking which is longer than a certain
length, as proposed by [3]. This is explained by the fact that
road marking stripes don’t have a long width (considering
crosswalks and lane markings).

III. VEHICLE LOCALIZATION

In order to validate the road marking detector, it was
applied in a vehicle localization problem. First, the point
cloud formed by road markings and curbs were registered
through Explicit Loop Closing Heuristic (ELCH) SLAM
method [11]. Basically, ELCH aligns consecutive point
clouds by minimizing the error in the loop closing point.
The obtained map was placed into a binary grid map with
0.10 m resolution.

The Monte Carlo Localization (MCL) method was then
used to localize the vehicle in the resulting map. In the
MCL algorithm, initially a set of particles that represent
the possible vehicle position are spread in the map (around
the GPS position). Particles that best match curb and road
marking with the map are preserved. The particle with the
lowest error is chosen to represent the vehicle position.

IV. EXPERIMENTS AND RESULTS

Road marking detection experiments were performed
through CaRINA 2 autonomous car prototype mounted with
a Velodyne HDL-32E LIDAR sensor. The car odometry was
obtained by Xsens MTi-G GPS device. First, we tested the
road marking detector and then validated it in a vehicle
localization problem. Thus, we compared the localization
using only curb feature and using both curb and road marking

features. The following subsections describe the conducted
experiments.

A. Road Marking Detection

For road marking detection we assigned the threshold
value tn = 0.90 (maximum separability value), tT = 197
(maximum intensity for road markings) and tP = 0.80
(maximum cumulative sum). In Figure 4 is presented the road
marking detection in urban streets. The blue line represents
the road boundaries obtained from curb detector. These
lines delimit the road markings search space. Yellow points
represent the detected road marking by using the adapted
Otsu method.

The intensity histogram aspect of the road represented
in Figure 4(b) is shown in Figure 5. The Otsu method
divided the bimodal histogram at T = 160 which resulted
in the maximum variance of σ2

L = 27.13. At this point,
the cumulative sum and mean indicate that the number of
points start to increase at value T (i.e. the point that the
asphalt intensity starts). The values of cumulative sum and
separability measure were respectively P (T ) = 0.0128 and
η(T ) = 0.8589 which satisfies tP and tn.

B. Road Marking as Localization Feature

The robustness of the detector was verified by using the
road markings as a feature for map based localization. In
order to build the environment map, the sequence of point
clouds formed by curb and road marking were registered
through ELCH offline SLAM method. We traveled a 822 m
urban street and generated an occupancy map with 0.10 m
resolution. Figure 6 illustrates the resulting map and the

587



(a) Aerial map (b) Occupancy map

Fig. 6. (a) Aerial map of the track used in the localization experiments. (b) Map of the same track formed by detected curbs (black dots) and road
markings (red dots).

corresponding aerial map for comparison. As the map is most
of part longitudinally symmetric, we mainly focused on the
lateral localization.

For localization we adopted the MCL method configured
to use at minimum 100 and at maximum 5000 particles, so
the particle number is changed according to the localization
error. These particles are initially distributed around the
position given by the GPS device. Due to the GPS error it is
necessary the vehicle run few meters for MCL convergence.

In the experiments we analyzed the MCL covariance
error and the position error relative to ground truth. All
experiment results were compared to MCL using only curb
features (a map constituted only by curb points is used).
The purpose of the comparison is to evidence that the use
of road markings result in a better vehicle localization if
used solely curbs. Table I presents the obtained covariance
and position error values along the test track which confirms
the performance improvement when adding road marking
information. Regards to the lateral localization error, we
observed a reduction of 53.56%, resulting in a average
lateral error of 0.3119 m. The use of road marking also
reduced the lateral and longitudinal covariance values in
71.34% (0.0542 m2) and 59.69% (0.0391 m2), respectively.
As expected, in terms of longitudinal error it was observed
a subtle reduction, resulting in a mean error of 1.1982 m.

Figure 7(a) and (c) illustrate graphically the position error
along the test track if used only curb data and used both
curb and road marking data, respectively. The circle radius
size is proportional to the difference between the position
returned by MCL and the ground truth. MCL covariance
of the experiments are shown in Figure 7(b) and (d). A
more detailed analysis of the localization error is presented
in Figure 8. This graph shows the error value according to
the traveled distance.

V. CONCLUSION

This paper presented a road marking detection that uses
LIDAR reflective intensity data that is insensitive to light
variation and can operate even without external illumination.
The proposed road marking detector uses an adapted Otsu

thresholding algorithm which computes a value that opti-
mizes the segmentation of point clouds into asphalt and road
marking. In order to obtain better results, we also integrated
the curb detector to delimit the road marking search area
and the deterministic intensity calibration algorithm of [2].
Detection results showed the capacity of extracting different
types of road markings (crosswalk, dashed line, continuous
line).

We also applied the road marking detector to a vehicle
localization algorithm for better performance analysis. First
we registered a set of point clouds formed by curb and
road marking data and then built an occupancy grid. In the
localization experiment we tested the MCL algorithm with
two configurations. In the first configuration we tested the
localization using curb features, resulting in a 1.3174 m
and 0.5823 m of longitudinal and lateral errors, respectively.
Using curb and road marking features, we obtained 1.1982 m
and 0.3119 m of longitudinal and lateral errors. In summary,
using road markings together with curbs resulted in a lower

(a) MCL using Curb Data

x (m) y (m) xy (m) Σ(x) (m2) Σ(y) (m2)

Mean 1.3174 0.5823 1.4947 0.1891 0.0970

Std. Dev 0.3931 0.4822 0.4068 0.5008 0.1304

(b) MCL using Curb and Road Marking Data

x (m) y (m) xy (m) Σ(x) (m2) Σ(y) (m2)

Mean 1.1982 0.3119 1.2556 0.0542 0.0391

Std. Dev 0.2959 0.3363 0.2907 0.1045 0.0512

TABLE I
STATISTICS OF MCL EXPERIMENT. x, y AND xy CORRESPOND TO

LONGITUDINAL, LATERAL AND ABSOLUTE EUCLIDEAN DISTANCE

ERROR, RESPECTIVELY. Σ(x) AND Σ(y) CORRESPOND TO MCL
LONGITUDINAL AND LATERAL ERROR VARIANCES, RESPECTIVELY.
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Fig. 7. MCL covariance and position error. (a) and (b) are errors obtained when used only curb feature for localization. Ellipses x and y coordinates
were shifted for better illustration. (c) and (d) are errors obtained when used road marking and curb features.
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Fig. 8. Position estimation error along the trajectory. Blue line denotes MCL using curb feature and red line denotes MCL using road marking and curb
features.

position error, lower covariance error and spent fewer itera-
tions for convergence. The obtained localization errors were
similar to other approaches, as [2], [3].

For next steps, we pretend classify the results of the
road marking detector, in order to make the autonomous car
traverse the streets according to the traffic codes.
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